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Abstract. On a one-dimensional lattice without uniform interval, the Hermitian
conjugation of a g-differential operator is discussed, Then a deformation of quantum
mechanics in one dimension is presented. As an application, the harmonic oscillator
is discussed. The energy spectrum and the cigenfunctions are shown to depend on an
arbitrary deformation function. The deformed coherent states are also discussed. It is
found that the completeness relation of coherent states holds for the case of g-coherent
states, i.e. the deformation of the Heisenberg-Weyl algebra is a ¢-analogue Hopf algebra.

1. Introduction

Recently, much attention has been paid to the study of so-called quantum groups in
both physical and mathematical aspects. Quantum groups [1] are the dual category
of Hopf algebra which are neither commutative nor co-commutative. Most of the
well studied concrete examples of quantum groups are deformations of the universal
enveloping algebra of the semi-simple Lie algebra [2-5]. These mathematical and
algebraic structures arise in quantum inverse scattering theory [6] and statistical
mechanics [7]. They may be thought of as matrix groups in which the elements
themselves are not commutative but obey a set of bilinear product relations [4, 8).

Dozens of works are devoted to the study of U (SI(2)) etc [9] via the so-
called g-deformation of bosonic realization, which is a g-analogue of the Schwinger
technique in quantum mechanics [10]. It is known, by the work of Manin [11] and
Woronowicz [12] and further devclopment by Wess and Zumino {13], that quantum
groups provide a concrete example of non-commutative differential gEOI‘ﬁeiry A
connection between quantum group and Lic-admissible Q-algebra was realized in the
work of Janussis [14].

As one of the attempts to explore the physical significance of quantum groups, a g-
extension of a one-dimensional harmonic oscillator in the Schrédinger picture is given
in the work of Minahan [15]. We try to establish a deformation of quantum mechanics
so that standard quantum mechanics is its limit case, and quantum group symmetry
is contained in it. To do so is not only to explore the meaning of quantum groups
in the context of quantum mechanics, but to provide possibilities of non-perturbation
explanations of some perturbation corrections [16] as well. The present paper reports
one step toward the above goal. In the next section, we briefly illustrate some
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notations and derive some useful formulae of g-differential calculus. In section 3, we
discuss Hermitian conjugation and establish a deformation of the one-dimensional
stationary Schrodinger equation. In section 4, we discuss harmonic oscillators. The
energy spectrum and eigenfunctions are found to depend on a function, which involves
concrete deformations. In section 5, we discuss deformations of coherent states,
especially g-coherent states and the g-coherent states representation, an analogue of
Bargman space representation. Finally, we give some conclusions and a discussion.

2. The g<differential integral calculus

The lattice formulation of quantum field theories allows the non-perturbation
calculation of bound-state mass and decay amplitude. In the usual lattice approach to
the Schrédinger equation either using finite-difference [17] or using finite-element [18]
methods, the lattice spacing is the same everywhere, ie. the coordinates of lattice
points are an arithmetic sequence. However, it is known that eigenfunctions of
bound states always descend properly as the coordinate goes to infinity such that they
are square-integrable, i.e. L?-functions in mathematical terminology. By means of
the basic idea of the Lebesque integral, we may no longer consider a lattice with
a constant lattice spacing. The lattice spacing should increase as the coordinates of
lattice points do. Evidently, the simplest case is one in which the coordinates of lattice
points are in a geometric sequence. This can be regarded as a lattice deformation
from an arithmetic lattice to a geometric one (q-lattice) i.e.

{z, =na+xy | n€ Z}— {z! = ¢z} |neZ)} 2.1

which is realized by exponential map z/, = e*» (q:= e?/2).

On the basis of the above consideration, we will re-introduce the following
definition and formulations. For z € R, let F denotes the set of all complex functions
on R, ie. the composition of

F={f|f(z)el}=Fn(R,(C)

(fog)z)= flx)g(=) vf,g€F.

Now we introduce a dilation operator §

G:F = F
defined by
(¢f)(z) = f(qz) fer 2.2)
(obviously (§)~! = (¢~1)). Then a g-difference can be dcfined by
d, f:=4¢f-¢'f. (2.3)

G- 4

The gdifference quotient operator is given by

A oAl
d.q = q—q . (2.4a)
d,dp (g—gNide
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or explicitly

d, f(z) _ flqz) - f(q~'x)
qdqm = flam = A (2.4b)

which is invariant under ¢ — ¢~1, and which recovers the usual definition of function
derivation when ¢ — 1. The g-amalogue of Lebnitz rule is easily obtained from
definition (2.4):

g

I
|

ol
(=%
-,
>

——(f og)= —ioqg+(q"'f) 0§~ (qf)o—x- 2.5)

q q q q

[ =N
=%
8

If we let f (:r:)l = z, (2.5) gives an operator relation
——r—-—g T—=4. (2.6)
Similarly we have another useful operator relation
it -G = 0. @7

One may define a g-integral as the inverse of the ¢-difference quotient, denoted
hy
vy

/f(:v)dq:c = F(z)+ C (2.8)

where d, F'((z)/d, z = f(x). Then one can show that the summation along a g¢-lattice
7 4 .
can be calculated from a g-analogue of the Newton-Lebnitz formula

S fata)(a- g ‘)q”x—f [(z)d,z = F(z;)- F(z,) @9)

=1

srhoro a  — ,.f..._ PR DU T S « N rtha enmmatinn chanld ha Anadad intn qaon
wiCiC ¢, = g’ ¢, T, =qg Tl ‘bf : < v, wiC SUMNation snGusG oC GIVIGEU N0 WO
parts, ie. x; to 0 and O to ). Evidently, the following identity holds
+00 +00 :
- sl .
[ s@ae= [ ddn@,e. 2.10)
- — o0

The inverse of the Jackson [19] g-integral (2.4) was first used to study the relation
between rational conformal field theories and quantum groups in [20]. In [21] one
can find some discussions about g-integration rules,
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3. Hermitian conjugation and the ¢-Schridinger equation

In this section, we will try to establish the g-Schrddinger equation in coordinate
representation. We define the inner product as
-+ o0
(v]e)= () e(z)d, . 3.1)

— 0o

We consider the case in which wavefunctions are continuous at the origin and vanish
at infinity ie.

P(0%) = (07) P(o0) = 0. (3.2

Using (2.5) and (2.10), we deduce from

+oo g
[ @@ ee)ge=0

oo 4,7
that
d, 1t d
=19 = _(g6) 12
[(QQ) dqw} (QQ)dqx- (3.3)

Similarly we have from (2.10) that

df=¢g". (3.4)
Then we obtain from (3.3), (3.4) and (2.6)
d )1‘ d
9 g
24} =1 (3.5)
(dq x d,z

Thus a deformation of a time-independent Schrddinger equation with positive-definite
energy spectrum can be defined by the following Hamiltonian:

dZ
— 9
H + V(z) (.6)
7 d z?
q
whara 1/ f ' ctandes far tha snntantial  OYkagiaschs 3f ravarte tn tha ctondard Aanantom
ilwiw ¥ \‘b) JLAliVY LUl LI PUlUllLlal UUVIU“JI], IV 1w YRl b W LE JralivAaly Hu“lllulll

|

mechanics when g

4. Harmonic oscillator

Let us consider a harmonic oscillator whose potential s V(z) = z2 Then the
Hamiltonian reads

Hy= -5 +a. (4.1)
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It can be written as

Hq =%(a;"aq+aqa;") (4.2a)
where
d d
_ g - _
=+t b =(e)l=a- 1. | (4.2b)

a a
T ]

It is easy to check that e, and e} are no longer energy step decrease and step
increase operators, ie. [H,,a,] # ~a,. However, we can introduce a new Hermitian
operator N, such that

[Nq’aq]'_-“a [Nq,a;"]=a;". (43)

q

Of course the latter is an immediate consequence of the former in (4.3) due to

NJ = N,. Obviously [N,, H,] = 0, so an eigenstate of N_ is also an eigenstate of
H,. If we assume [a,,a}] = X, from Jacobi identity

([(Ng.a,).af]+ [leg, af), No] + [[a7, N,],a,] =0
we have

l[a,, af], Nyl = 0. @4
This shows that X = u{N,), ie. X may be any function of N, . Then

[ag,a3] = u(N,). 4.5)

In order to recover standard quantum mechanics, the function must go to unity as
the deformation parameter g goes to 1. It is known that p(N,) = [N, + 1} — [V,]
where [z] := (¢ — ¢~%)/(g— q¢~!) is the case indicated by Biedenharn in the study
of quantum groups [9]. For a given function p, chosen in accordance with experiment
results, the Hamiltonian (4.2} becomes

H,=a}a, + ju(N,). (4.6)

Commutator relations (4.3) and (4.5) are the defining relations of a deformed
Heisenberg—Weyl algebra. From those defining relations, one can find that a} and
a, are creation and annihilation operators of eigenvalues of N, a quantum number
operator, i.c.

n 1/2 n—1 1/2
Ngmy=niny  atim = (L u) ey e = (T uh) ey,
i=0 i=0
4.7
Then eigenvalues of Hamiltonian (4.6) are easily calculated:

n—1l

E (n)=)_ n(i)+ fu(n). 4.8)

=t
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The set of eigenstates {|n) | » = 0,1,2,...,00} span a Fock space. In terms of
vacuum state [0} (ie. ground state) the normalized eigenstates in Fock representation
(a +)"

are expressed as
yon 0> . 4.9
[T5=1 (i (P2

Then the eigenfunctions in coordinate representation can be derived from (4.9)
without much difficulty. First we consider the vacuum state |0) which satisfies

[n} =

a,|0) =0. (4.10)
Using the expression of ¢, in coordinate representation (4.2b), we have the following
g-differential equation:

(x+-93~)¢ =0 @.11)
dz/ ° '

T

where 1, := (2]0}. Solving (4.11), we have the eigenfunction of ground state

1
() = =75 expga(—a?/[2]) (4.12)
where exp, = := ) 0 ﬁﬁr Then we obtain eigenfunctions of excited states

bul2) 1= (aln) = : 7 (2= g ) o212,
S S IO AN

(4.13)

5. Coherent states

We now observe the spectrum problem of g-annihilation operator a . The eigenstates
of a
q

a,|o) = ofa) 5.1

are a deformation of usual coherent states(22]. In Fock representation, (5.1) is easily
solved by using {4.7)

o) = (&P, (—lel)]"/? 3 o n
= [l D RO )
= [&xp,, (~|a|})] /2 &P, (aa])I0) . $5.2)

Where o takes any value in the complex plane and exp,(x) stands for a deformed
exponential function

o2 "

Fu(2) 1= 2, T
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which is obviously just the equ(a:) that appeared in section 4 when pu(i) =
[¢ + 1] — [4]. For u(é) = 1, this is the usual exponential function and then (5.2)
recovers the usual coherent states in quantum mechanics.

As we have known the expression of coherent states in the Fock representation
and the transformation function (4.13) from Fock space to coordinate space, we
can easily Obtain its expression in coordinate representation, ie. wavefunctions of
eigenstates of a,

8u(2) = Ylaln)(nlo) = 85, (I8, [a(= - 70 )| ew—a/120)
n=0 q

(3.3)
The probability distribution of a deformed coherent state in Fock representation
is
(o) (5.4)
[T [ #(9)]
Which is a deformation of Poisson distribution. The deformed coherent states are
also not orthogonal to each other due to

(Ble) = &85 ,(~Iel") &P, (~|8) V&, (as") 6.5
The completeness relation for the deformed coherent states is shown to hold only in
the case p{zx) = [z + 1] — [x], ie. g-coherent states (see appendix).

[{n|o)|* = &p,, (~|al®)

/ Jlaxal =2 =1 for u(e)=la+11-1al. 5.6)
This is an interesting consequence. In this case, (4.7) becomes

N,|n) = N,|n) af|n) = ([n+1))"?|n) a, | n} = ([n)V?|n). (5.7)

On the basis of the completeness relation (5.6), we can expand an n-quantum state
in terms of g-coherent states

d2 o a Qo
= 2% _ —lapy2& T2
im = [ ledeln == = [lep, (~lafi¥i ez St} 68
where & stands for o*. Substituting (5.9} into (5.8), we obtain
afa” =™t a,@ = [n]a""'. (5.9)

Then we immediately have an expression of creation and annihilation operator in
coherent states representation, ie.

d
a;’ =t a, = Clq-iﬁ . (5.10)

Any state of a harmonic oscillator must possess the following expansion in ¢-Forh
space:

o

) =" eqln) (5.11)

n=0
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where Y |c,|* = 1. In order to expand the arbitrary state in terms of g-coherent
states, we must use the completeness relation which has been used in deriving
(5.9). Substituting (5.8) into (5.11), we obtain the following expansion in g-coherent
representation:

5] & dZ
]¢)=/zan[equ(_lalz)]llz _.Lﬂq_‘&>, (512)
n=0

Obviously the amplitude distribution function in this representation i not an entire
function

() = x(&)[exp,(—&a)]"? (5.13)

where x(&) is an (anti-) analytical function on the complex a-plane and is defined
by the expansion coefficients {c, } of the state |+} in Fock space, ie.

[ '6“'
x(8) = EJCHW. (5.14)

There is apparently a one-to-one correspondence between the entire function
(5.15) and the state in Fock space (5.12). The Hilbert space of such functions x{3)
is the known Bargman space [24], in which the inner product of two vectors  and
x is defined by

Ao
(e = [[e(@]x(3) expy(~laf) (5.15)

This definition can be easily derived via g-coherent state representation, i.e. by using
(5.12) and (5.14).

6. Conclusion and discussion

Above we have attempted to establish a deformation of quantum mechanics. In fact
we considered a discrete guantum mechanics in one dimension, in which the intervals
are not uniform. Instead, the intervals are divided by a geometric sequence. The
Hermitian conjugation of the g-differential operator (strictly speaking quotient of
g-difference) are discussion and then a one-dimensional positive-definite stationary
Schrodinger equation is set up.

For the case of the Harmonic oscillator, we have solved the energy spectrum
and the eigenfunctions by means of the operator method. Owing to the constraints
of Jacobi identity, the oscillator algebra may contain an arbitrary function of the g-
quantum number operator N, only. In order to recover the usual quantum mechanics,
this function is only equal to unity when the deformation parameter goes to unity.
So the eigenvalues and eigenfunctions of the Hamiltonian contain a deformation
function, which can be chosen according to experimental results.

Furthermore, we discussed the coherent states for the deformed Heisenberg-
Weyl algebra. Certainly the deformed coherent states also contain the deformation
function. However the coherent states satisfy the completeness relation only for
a special deformation function. This is just the case of the known g-analogue of
the Heisenberg-Weyl algebra, a Hopf algebra. Other potential cases and the three-
dimensional case are now in discussion. Aside from the non-commutative geometry
approach to deformations of quantum mechanics [25], it is also worthwhile to notice
the connections between quantum groups and discrete quantum mechanics.
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Appendix

From the definition (2.4), one can easily find

d

a;_an — [n}r“’_l (AI)
d

iz —Lexp x=exp, x (A2)
[lgm = [mn]/[m] (A4)
% my m-1 dq‘”

dqxf(a: ) = [m]z it m)f(:c (AS)

The following formula of integration by parts is a direct consequence of (2.5):

Ty
[ (6£)d,9 = fol2! ~[ (§19)d, f . (A6)
The g-analogue of the T"-function is defined by

L (p):= fummp Yexp,(-z)d,z = [il e?~texp (—2?)d, . (A7)

— 00

Using (A1)-(A4), one can show that
Lolp+1) =[p]T(0) F(n+1) = [n]t. (A8)

The completeness relation (5.7) is shown in the following:

a)a oo LA
e “'“2“‘2({,1'.[3.,1].');/2 | tulatem,(—lafyjapmet [ agein-me

=7y |n)(n|=x. (A9)
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