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AbEtmcL On a one-dimensional lattice withoul uniform interval, lhe Hermitian 
wnjugation of a qdifferential operator is discused. ?hen a deformation of quantum 
mechanics in one dimension is presented. As an applicalion, the harmonic mil lalor 
is discussed. ?be energy spectlum and the eigenfunaions are shown IO depend on an 
arbitrary deformation funclion. The deformed mherenl slates are also discussed. It i s  
found that the mmpleteness relation of mherenl sates holds far lhe case of q-mherenl 
stales, i.e. the deformation of the Heisenberg-Weyl algebra is a q-analogue Hoptalgebra. 

1. Introduction 

Recently, much attention has been paid to the study of so-called quantum groups in 
bath physical and mathematical aspects. Quantum groups [l] are the dual category 
of Hopf algebra which are neither commutative nor co-commutative. Most of the 
well studied concrete examples of quantum groups are deformations of the universal 
enveloping algebra of the semi-simple Lie algebra [Z-51. These mathematical and 
algebraic structures arise in quantum inverse scattering theory [6] and statistical 
mechanics [7J. They may be thought of as matrix groups in which the elements 
themselves are not commutative but obey a set of bilinear product relations [4,8]. 

Dozens of works are devoted to the study of Uq(Sl(2)) etc 191 via the so- 
called qdeformation of bosonic realization, which is a q-analogue of the Schwinger 
technique in quantum mechanics [lo]. It is known, by the work of Manin [ l l ]  and 
Woronowicz I121 and further development by Wess and Zumino 1131, that quantum 

A 
connection between quantum group and Lie-admissible Q-algebra was realized in the 
work of Janussis [14]. 

As one of the attempts to explore the physical significance of quantum groups, a 9- 
extension of a one-dimensional harmonic oscillator in the Schrodinger picture is given 
in the work of Minahan [15]. We try to establish a deformation of quantum mechanics 
so that standard quantum mechanics is its limit case, and quantum group symmetry 
is contained in it. 'Ib do so is not only to explore the meaning of quantum groups 
in the context of quantum mechanics, but to provide possibilities of non-perturbation 
explanations of some perturbation corrections [16] as well. The present paper reports 
one step toward the above goal. In the next section, we briefly illustrate some 
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p i p  p'oG6l;e a aficiete example of iioii-cor,(nutative dilieiitia; geijineq, 
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notations and derive some useful formulae of qdifferential calculus. In section 3, we 
discuss Hermitian conjugation and establish a deformation of the one-dimensional 
stationary Schrodinger equation. In section 4, we discuss harmonic oscillators. The 
energy spectrum and eigenfunctions are found to depend on a function, which involves 
concrete deformations. In section 5, we discuss deformations of coherent states, 
especially qcoherent states and the qcoherent states representation, an analogue of 
Bargman space representation. Finally, we give some conclusions and a discussion. 
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2. The gdiITerentia1 integral calculus 

The lattice formulation of quantum field theories allows the non-perturbation 
calculation of bound-state mass and decay amplitude. In the usual lattice approach to 
the Schrodinger equation either using finitedifference [17] or using finite-element [lS] 
methods, the lattice spacing is the same everywhere, Le. the coordinates of lattice 
p in ts  are an arithmetic sequence. However, it is known that eigenfunctions of 
bound states always descend properly as the coordinate goes to infinity such that they 
are square-integrable, i.e. L2-functions in mathematical terminology. By means of 
the basic idea of the Lebesque integral, we may no longer consider a lattice with 

lattice points do. Evidently, the simplest case is one in which the coordinates of lattice 
p in t s  are in a geometric sequence. This can be regarded as a lattice deformation 
from an arithmetic lattice to a geometric one (q-lattice) i.e. 

a constant !attice spacing, n e  !attice spacing shnu!d increase as the coordinates of 

{z, = na + 2" I n E Z )  - {z; = q2nz; I n E Z )  (2.1) 

which is realized by exponential map z', = e*- ( q  := ea/'). 
On the basis of the above consideration, we will re-introduce the following 

definition and formulations. For z E 'R, let F denotes the set of all complex functions 
on 'R, i.e. the composition of 

F = {f I f(z) E C) = Fun(R,C) 
is defined by 

(f 0 s)(z) = f (z)s(r)  Vf,s E 3. 
Now we introduce a dilation operator 6 

4:3+3 

defined by 

(Bf)(.) = f(W) f E ?= 
(obviously (G)-' = (6-I)). Then a qdifference can be dcfined by 

d r f  := <f - < - I f .  
?he qdifference quotient operator is given by 

4 -  4-1 
1- - 
d,id, ( q  - q-')id, 

d 
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or explicitly 

d , f (x)  f ( P )  - f (q- 'z)  
d, ( 9  - r l ) x  

- 
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which is invariant under q - q-I ,  and which recovers the usual definition of function 
derivation when q + 1, The q-analogue of Lehnit~ Tule i$ mi!y obtained from 
definition (2.4): 

If we let f(z) = x, (2.5) gives an operator relation 

Similarly we have another useful operator relation 

One may define a q-integral as the inverse of the q-difference quotient, denoted 
hv 
"J 

/ f ( x ) d q z  = F ( x )  t C (2.8) 

where d q F ( z ) / d q z  = f(z).  Then one can show that the summation along a q-lattice 
can be calculated from a q-analogue of the Newton-Lebnitz formula 

..,harn nllrkr z, = qfz, I; = q iz  :if z t z j  : 0, :he ssmmation shos!d he di:+ded iii7:o :GO 

parts, ie. xi to 0 and 0 to z,). Evidently, the following identity holds: 

(2.10) 

The inverse of the Jackson 1191 q-integral (2.4) was first used to study the relation 
between rational conformal field theories and quantum groups in [20]. In [21] one 
can find some discussions about q-integration rules. 
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3. Hermitian conjugation and the qSchrMinger equation 

In this section, we will try to establish the q-Schrodinger equation in coordinate 
representation. We define the inner product as 
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We consider the case in which wavefunctions are continuous at the origin and vanish 
at infinity Le. 

+(O+) = $(o-) 1L(cu) = 0 .  (3.2) 

Using (2.5) and (2.10), . .  we deduce from 

that 

Similarly we have from (2.10) that 

qt = q - l q - l ,  

Then we obtain from (3.3), (3.4) and (2.6) 

(3.3) 

(3.4) 

(3.5) 

Thus a deformation of a time-independent Schrodinger equation with positivedefinite 
energy spectrum can he defined by the following Hamiltonian: 

(3.6) 

4. Harmonic oscillator 

Let us consider a harmonic oscillator whose potential is V ( x )  = xz. Then the 
Hamiltonian reads 
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It can be written as 

where 

It is easy to check that a ,  and a: are no longer energy step decrease and step 
increase operators, i.e. [H,, a,] # -a,. However, we can introduce a new Hermitian 
operator N ,  such that 

[N,, a,] = -a  'I [N,,a,+I = a:. (4.3) 

Of come the latter is an immediate consequence of the former in (4.3) due to 
N! = N,  . Obviously [N,, If,] = 0, so an eigenstate of N, is also an eigenstate of 
H,. If we assume [a , ,a : ]  = X, from Jacobi identity 

[[N,,a,l,a:l+ [la,,a:l,N,l +[[a:,N,l,a,l = o  

r[.,,a:I,N,l = 0 .  (4.4) 

[a,,a:I = P ( N , ) '  (4.5) 

we have 

This shows that X = p( N,), i.e. X may be any function of N,. Then 

In order to recover standard quantum mechanics, the function must go to unity as 
the deformation parameter q goes to 1. It is known that p( N,) = [N, + I] - [N,] 
where [x] := (q" - q - = ) / ( q  - q - l )  is the case indicated by Biedenharn in the study 
of quantum groups [9]. For a given function p ,  chosen in accordance with experiment 
results; the Hamiltonian (4.2) becomes 

H ,  = .:a, + ; p ( N , ) .  (4.6) 

Commutator relations (4.3) and (4.5) are the defining relations of a deformed 
Heisenberg-Weyl algebra. From those defining relations, one can find that a: and 
a, are creation and annihilation operators of eigenvalues of N,, a quantum number 
operator, Le. 

(4.7) 

Then eigenvalues of Hamiltonian (4.6) are easily calculated: 

n - 1  
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The set of eigenstates {In) I R = 0,1,2, .  . . , oa} span a Fock space. In terms of 
vacuum state 10) (i.e. ground state) the normalized eigenstates in Fock representation 
are expressed as 

(4.9) 

Then the eigenfunctions in coordinate representation can be derived from (4.9) 
without much difficulty. First we consider the vacuum state 10) which satisfies 

a, 10) = 0. (4.10) 

Using the expression of a, in coordinate representation (4.2b), we have the following 
qdifferential equation: 

(4.11) 

where := (210). Solving (4.11), we have the eigenfunction of ground state 

(4.12) 1 
+ O ( Z )  = A1/4 exP,z(-z2/[21) 

where exp, z := Cz=p=o 6. Then we obtain eigenfunctions of excited states 

(4.13) 

5. Coherent states 

We now observe the spectrum problem of q-annihilation operator aq . The eigenstates 
of a, 

= ala) (5.1) 

are a deformation of usual coherent states[22]. In Fock representation, (5.1) is easily 
solved by using (4.7) 

Where a takes any value in the complex plane and e,,(.) stands for a deformed 
exponential function 
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which is obviously just the exp, (z )  that appeared in section 4 when p ( i )  = 
[i + 11 - [;I. Fbr p ( i )  = 1, this is the usual exponential function and then (5.2) 
recwes the usual coherent states in quantum mechanics. 

As we have known the expression of coherent states in the Fock representation 
and the transfonnation function (4.13) from Fock space to coordinate space, we 
can easily obtain its expression in coordinate representation, i.e. wavefunctions of 
eigenstates of ap 

The probability distribution of a deformed coherent state in Fbck representation 
is 

(5.4) 

Which is a deformation of Poisson distribution. The deformed coherent states are 
also not orthogonal to each other due to 

. .-. - 1 

(Dl aj = [E$,, ( - la I') exp,, ( -  PI‘)] ' I  ' expu (a p' ) . (5.5) 
The completeness relation for the deformed coherent states is shown to hold only in 
the case p ( z )  = [z+ 11 - [z], Le. qcoherent states (see appendix). 

d2 U J Iaj(ai+- = 1 for p ( z )  = [z + 11 - [z] . 
This is an interesting consequence. In this case, (4.7) becomes 

N J ~ )  = N,lnj a:ln) = ( [ n +  1])~/~1n)  aql n )  = ([n])'f2ln). (5.7) 

On the basis of the completeness relation (5.6), we can expand an n-quantum state 
in terms of qcoherent states 

where h stands for U*. Substituting (5.9) into (5.8), we obtain 

a : P  = iPfl a,Z' = [ n ] ~ - l .  (5.9) 

Then we immediately have an expression of creation and annihilation operator in 
coherent states representation, i.e. 

(5.10) 

A n y  state of a harmonic oscillator must possess the following expansion in q-Forh 
space: 

m 

(5.11) 
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where IcJ2 = 1. In order to expand the arbitrary state in terms of qcoherent 
states, we must use the completeness relation which has been used in deriving 
(5.9). Substituting (5.8) into (5.11), we obtain the following expansion in qcoherent 
representation: 

Youquan Li and Zheng-mao Sheng 

(5.12) 

Ohviously the amplitude distribution function in this representation is not an entire 
function 

(.I+) = ~ ( d ) [ e x p , ( - d a ) ] ' / ~  (5.13) 

where x ( d )  is an (anti-) analytical function on the complex a-plane and is defined 
by the expansion coefficients {c,,} of the state I+) in Fock space, i.e. 

(5.14) 

There is apparently a one-to-one correspondence between the entire function 
(5.15) and the state in Fock space (5.12). The Hilbert space of such functions x(P) 
is the known Bargman space [24], in which the inner product of two Vectors 'p and 
x is defined by 

(5.15) 

This definition can be easily derived via qcoherent state representation, i.e. by using 
(5.12) and (5.14). 

6. Conclusion and discussion 

Above we have attempted to establish a deformation of quantum mechanics. In fact 
we considered a discrete quantum mechanics in one dimension, in which the intervals 
are not uniform. Instead, the intervals are divided by a geometric sequence. The 
Hermitian conjugation of the qdifferential operator (strictly speaking quotient of 
qdifference) are discussion and then a one-dimensional positive-definite stationary 
Schrbdinger equation is set up. 

For the case of the Harmonic oscillator, we have solvcd the energy spectrum 
and the eigenfunctions by means of the operator method. Owing to the constraints 
of Jacobi identity, the oscillator algebra may contain an arbitrary function of the q- 
quantum number operator N ,  only. In order to recover the usual quantum mechanics, 
this function is only equal to unity when the deformation parameter goes to unity. 
So the eigenvalues and eigenfunctions of the Hamiltonian contain a deformation 
function, which can he chosen according to experimental results. 

Furthermore, we discussed the coherent states for the deformed Heisenberg- 
Weyl algebra. Certainly the deformed coherent states also contain the deformation 
function. However the coherent states satisfy the completeness relation only for 
a special deformation function. This is just the case of the known q-analogue Of 
the Heisenberg-Weyl algebra, a Hopf algebra, Other potential cases and the three- 
dimensional case are now in discussion. Aside from the non-commutative geometry 
approach to deformations of quantum mechanics [Z] ,  it is also worthwhile to notice 
the connections between quantum groups and discrete quantum mechanics. 
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Appendix 

From the definition (2.4), one can easily find 

The following formula of integration by parts is a direct consequence of (2. 

The q-analogue of the r-function is defined by 
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The completeness relation (5.7) is shown in the following: 
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